Prediksi IHSG dengan Backpropagation Neural Network
نویسندگان
چکیده
منابع مشابه
Backpropagation Neural Network Tutorial
The Architecture of BPNN’s A population P of objects that are similar but not identical allows P to be partitioned into a set of K groups, or classes, whereby the objects within the same class are more similar and the objects between classes are more dissimilar. The objects have N attributes (called properties or features) that can be measured (observed) so that each object can be represented b...
متن کاملNeural Network Model of the Backpropagation Algorithm
We apply a neural network to model neural network learning algorithm itself. The process of weights updating in neural network is observed and stored into file. Later, this data is used to train another network, which then will be able to train neural networks by imitating the trained algorithm. We use backpropagation algorithm for both, for training, and for sampling the training process. We i...
متن کاملReinforced backpropagation for deep neural network learning
Standard error backpropagation is used in almost all modern deep network training. However, it typically suffers from proliferation of saddle points in high-dimensional parameter space. Therefore, it is highly desirable to design an efficient algorithm to escape from these saddle points and reach a good parameter region of better generalization capabilities, especially based on rough insights a...
متن کاملLearning Neural Network Architectures using Backpropagation
Deep neural networks with millions of parameters are at the heart of many state of the art machine learning models today. However, recent works have shown that models with much smaller number of parameters can also perform just as well. In this work, we introduce the problem of architecture-learning, i.e; learning the architecture of a neural network along with weights. We start with a large ne...
متن کاملAndroid Malware Detection Using Backpropagation Neural Network
The rapid growing adoption of android operating system around the world affects the growth of malware that attacks this platform. One possible solution to overcome the threat of malware is building a comprehensive system to detect existing malware. This paper proposes multilayer perceptron artificial neural network trained with backpropagation algorithm to determine an application is malware or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)
سال: 2019
ISSN: 2580-0760
DOI: 10.29207/resti.v3i2.887